Academic Publication

Keith, David, and Joshua Horton. “Multilateral parametric climate risk insurance: a tool to facilitate agreement about deployment of solar geoengineering?Climate Policy (2019). Publisher's VersionAbstract
States will disagree about deployment of solar geoengineering, technologies that would reflect a small portion of incoming sunlight to reduce risks of climate change, and most disagreements will be grounded in conflicting interests. States that object to deployment will have many options to oppose it, so states favouring deployment will have a powerful incentive to meet their objections. Objections rooted in opposition to the anticipated unequal consequences of deployment may be met through compensation, yet climate policy is inhospitable to compensation via liability. We propose that multilateral parametric climate risk insurance might be a useful tool to facilitate agreement on solar geoengineering deployment. With parametric insurance, predetermined payouts are triggered when climate indices deviate from set ranges. We suggest that states favouring deployment could underwrite reduced-rate parametric climate insurance. This mechanism would be particularly suited to resolving disagreements based on divergent judgments about the outcomes of proposed implementation. This would be especially relevant in cases where disagreements are rooted in varying levels of trust in climate model predictions of solar geoengineering effectiveness and risks. Negotiations over the pricing and terms of a parametric risk pool would make divergent judgments explicit and quantitative. Reduced-rate insurance would provide a way for states that favour implementation to demonstrate their confidence in solar geoengineering by underwriting risk transfer and ensuring compensation without the need for attribution. This would offer a powerful incentive for states opposing implementation to moderate their opposition.
Vattioni, Sandro, Debra Weisenstein, David Keith, Aryeh Feinberg, Thomas Peter, and Andrea Stenke. “Exploring accumulation-mode H2SO4 versus SO2 stratospheric sulfate geoengineering in a sectional aerosol–chemistry–climate model.” Atmospheric Chemistry and Physics 19 (2019). Publisher's VersionAbstract
Stratospheric sulfate geoengineering (SSG) could contribute to avoiding some of the adverse impacts of climate change. We used the SOCOL-AER global aerosol–chemistry–climate model to investigate 21 different SSG scenarios, each with 1.83 Mt S yr−1 injected either in the form of accumulation-mode H2SO4 droplets (AM H2SO4), gas-phase SO2 or as combinations of both. For most scenarios, the sulfur was continuously emitted at an altitude of 50 hPa (≈20 km) in the tropics and subtropics. We assumed emissions to be zonally and latitudinally symmetric around the Equator. The spread of emissions ranged from 3.75 S–3.75 N to 30 S–30 N. In the SO2 emission scenarios, continuous production of tiny nucleation-mode particles results in increased coagulation, which together with gaseous H2SO4 condensation, produces coarse-mode particles. These large particles are less effective for backscattering solar radiation and have a shorter stratospheric residence time than AM H2SO4 particles. On average, the stratospheric aerosol burden and corresponding all-sky shortwave radiative forcing for the AM H2SO4 scenarios are about 37 % larger than for the SO2 scenarios. The simulated stratospheric aerosol burdens show a weak dependence on the latitudinal spread of emissions. Emitting at 30 N–30 S instead of 10 N–10 S only decreases stratospheric burdens by about 10 %. This is because a decrease in coagulation and the resulting smaller particle size is roughly balanced by faster removal through stratosphere-to-troposphere transport via tropopause folds. Increasing the injection altitude is also ineffective, although it generates a larger stratospheric burden, because enhanced condensation and/or coagulation leads to larger particles, which are less effective scatterers. In the case of gaseous SO2 emissions, limiting the sulfur injections spatially and temporally in the form of point and pulsed emissions reduces the total global annual nucleation, leading to less coagulation and thus smaller particles with increased stratospheric residence times. Pulse or point emissions of AM H2SO4 have the opposite effect: they decrease the stratospheric aerosol burden by increasing coagulation and only slightly decrease clear-sky radiative forcing. This study shows that direct emission of AM H2SO4 results in higher radiative forcing for the same sulfur equivalent mass injection strength than SO2 emissions, and that the sensitivity to different injection strategies varies for different forms of injected sulfur.
Heyen, Daniel, Joshua Horton, and Juan Moreno-Cruz. “Strategic implications of counter-geoengineering: Clash or cooperation?Journal of Environmental Economics and Management 95 (2019): 153-177. Publisher's VersionAbstract
Solar geoengineering has received increasing attention as an option to temporarily stabilize global temperatures. A key concern is that heterogeneous preferences over the optimal amount of cooling combined with low deployment costs may allow the country with the strongest incentive for cooling, the so-called free-driver, to impose a substantial externality on the rest of the world. We analyze whether the threat of counter-geoengineering technologies capable of negating the climatic effects of solar geoengineering can overcome the free-driver problemand tilt the game in favour of international cooperation. Our game-theoreticalmodel of countries with asymmetric preferences allows for a rigorous analysis of the strategic interaction surrounding solar geoengineering and counter-geoengineering.We find that countergeoengineering prevents the free-driver outcome, but not always with benign effects. The presence of counter-geoengineering leads to either a climate clash where countries engage in a non-cooperative escalation of opposing climate interventions (negative welfare effect), a moratorium treaty where countries commit to abstain from either type of climate intervention (indeterminate welfare effect), or cooperative deployment of solar geoengineering (positivewelfare effect).We show that the outcome depends crucially on the degree of asymmetry in temperature preferences between countries.
Svoboda, Toby, Peter Irvine, Daniel Callies, and Masahiro Sugiyama. “The potential for climate engineering with stratospheric sulfate aerosol injections to reduce climate injustice.” Journal of Global Ethics (2019). Publisher's VersionAbstract
Climate engineering with stratospheric sulfate aerosol injections (SSAI) has the potential to reduce risks of injustice related to anthropogenic emissions of greenhouse gases. Relying on evidence from modeling studies, this paper makes the case that SSAI could have the potential to reduce many of the key physical risks of climate change identified by the Intergovernmental Panel on Climate Change. Such risks carry potential injustice because they are often imposed on low-emitters who do not benefit from climate change. Because SSAI has the potential to reduce those risks, it thereby has the potential to reduce the injustice associated with anthropogenic emissions. While acknowledging important caveats, including uncertainty in modeling studies and the potential for SSAI to carry its own risks of injustice, the paper argues that there is a strong case for continued research into SSAI, especially if attention is paid to how it might be used to reduce emissions-driven injustice.
Irvine, Peter, Kerry Emanuel, Jie He, Larry Horowitz, Gabriel Vecchi, and David Keith. “Halving warming with idealized solar geoengineering moderates key climate hazards.” Nature Climate Change (2019). Publisher's VersionAbstract

Solar geoengineering (SG) has the potential to restore average surface temperatures by increasing planetary albedo, but this could reduce precipitation. Thus, although SG might reduce globally aggregated risks, it may increase climate risks for some regions. Here, using the high-resolution forecastoriented low ocean resolution (HiFLOR) model—which resolves tropical cyclones and has an improved representation of present-day precipitation extremes—alongside 12 models from the Geoengineering Model Intercomparison Project (GeoMIP), we analyse the fraction of locations that see their local climate change exacerbated or moderated by SG. Rather than restoring temperatures, we assume that SG is applied to halve the warming produced by doubling CO2 (half-SG). In HiFLOR, half-SG offsets most of the CO2-induced increase of simulated tropical cyclone intensity. Moreover, none of temperature, water availability, extreme temperature or extreme precipitation are exacerbated under half-SG when averaged over any Intergovernmental Panel on Climate Change (IPCC) Special Report on Extremes (SREX) region. Indeed, for both extreme precipitation and water availability, less than 0.4% of the ice-free land surface sees exacerbation. Thus, while concerns about the inequality of solar geoengineering impacts are appropriate, the quantitative extent of inequality may be overstated.

 

Horton, Joshua B.Parametric Insurance as an Alternative to Liability for Compensating Climate Harms.” Carbon & Climate Law Review 12, no. 4 (2018): 285-296. Publisher's VersionAbstract
Interstate compensation for climate change based on legal liability faces serious obstacles. Structural incongruities related to causation, time, scope, and scale impede application of tort law to climate change, while political opposition from developed countries prevents intergovernmental consideration of liability as a means of compensating for climate damages. Insurance, however, in particular parametric insurance triggered by objective environmental indices, is emerging as a promising alternative to liability. This is manifest in the UNFCCC and the Paris Agreement, which ruled out recourse to legal liability, and in the formation and expansion of regional sovereign climate risk insurance schemes in the Caribbean, Africa, and the Pacific. Theory and early practice suggest that parametric insurance exhibits five key advantages compared to legal liability in the climate change context: (1) it does not require that causation be demonstrated; (2) it has evolved to provide catastrophic coverage; (3) it is oriented toward the future rather than the past; (4) it is contractual, rather than adversarial, in nature; and (5) it provides a high degree of predictability. Compensation based on parametric insurance represents a novel climate policy option with significant potential to advance climate politics.
Smith, Wake, and Gernot Wagner. “Stratospheric aerosol injection tactics and costs in the first 15 years of deployment.” Environmental Research Letters 13 (2018). Publisher's VersionAbstract
We review the capabilities and costs of various lofting methods intended to deliver sulfates into the lower stratosphere. We lay out a future solar geoengineering deployment scenario of halving the increase in anthropogenic radiative forcing beginning 15 years hence, by deploying material to altitudes as high as ~20 km. After surveying an exhaustive list of potential deployment techniques, we settle upon an aircraft-based delivery system. Unlike the one prior comprehensive study on the topic (McClellan et al 2012 Environ. Res. Lett. 7 034019), we conclude that no existing aircraft design—even with extensive modifications—can reasonably fulfill this mission. However, we also conclude that developing a new, purpose-built high-altitude tanker with substantial payload capabilities would neither be technologically difficult nor prohibitively expensive. We calculate early-year costs of ~$1500 ton−1 of material deployed, resulting in average costs of ~$2.25 billion yr−1 over the first 15 years of deployment. We further calculate the number of flights at ~4000 in year one, linearly increasing by ~4000 yr−1. We conclude by arguing that, while cheap, such an aircraft-based program would unlikely be a secret, given the need for thousands of flights annually by airliner-sized aircraft operating from an international array of bases.
Irvine, Peter J., David W. Keith, and John Moore. “Brief communication: Understanding solar geoengineering's potential to limit sea level rise requires attention from cryosphere experts.” The Cryosphere 12 (2018): 2501-2513. Publisher's VersionAbstract
Stratospheric aerosol geoengineering, a form of solar geoengineering, is a proposal to add a reflective layer of aerosol to the stratosphere to reduce net radiative forcing and so to reduce the risks of climate change. The efficacy of solar geoengineering at reducing changes to the cryosphere is uncertain; solar geoengineering could reduce temperatures and so slow melt, but its ability to reverse ice sheet collapse once initiated may be limited. Here we review the literature on solar geoengineering and the cryosphere and identify the key uncertainties that research could address. Solar geoengineering may be more effective at reducing surface melt than a reduction in greenhouse forcing that produces the same global-average temperature response. Studies of natural analogues and model simulations support this conclusion. However, changes below the surfaces of the ocean and ice sheets may strongly limit the potential of solar geoengineering to reduce the retreat of marine glaciers. High-quality process model studies may illuminate these issues. Solar geoengineering is a contentious emerging issue in climate policy and it is critical that the potential, limits, and risks of these proposals are made clear for policy makers.
Horton, Joshua B., Jesse L. Reynolds, Holly Jean Buck, Daniel Callies, Stefan Schäfer, David W. Keith, and Steve Rayner. “Solar Geoengineering and Democracy.” Global Environmental Politics (2018): 5-24. Publisher's VersionAbstract
Some scientists suggest that it might be possible to reflect a portion of incoming sunlight back into space to reduce climate change and its impacts. Others argue that such solar radiation management (SRM) geoengineering is inherently incompatible with democracy. In this article, we reject this incompatibility argument. First, we counterargue that technologies such as SRM lack innate political characteristics and predetermined social effects, and that democracy need not be deliberative to serve as a standard for governance. We then rebut each of the argument’s core claims, countering that (1) democratic institutions are sufficiently resilient to manage SRM, (2) opting out of governance decisions is not a fundamental democratic right, (3) SRM may not require an undue degree of technocracy, and (4) its implementation may not concentrate power and promote authoritarianism. Although we reject the incompatibility argument, we do not argue that SRM is necessarily, or even likely to be, democratic in practice.
Parker, Andy, and Peter Irvine. “The Risk of Termination Shock From Solar Geoengineering.” Earth's Future 6 (2018): 456-467. Publisher's VersionAbstract
If solar geoengineering were to be deployed so as to mask a high level of global warming, and then stopped suddenly, there would be a rapid and damaging rise in temperatures. This effect is often referred to as termination shock, and it is an influential concept. Based on studies of its potential impacts, commentators often cite termination shock as one of the greatest risks of solar geoengineering. However, there has been little consideration of the likelihood of termination shock, so that conclusions about its risk are premature. This paper explores the physical characteristics of termination shock, then uses simple scenario analysis to plot out the pathways by which different driver events (such as terrorist attacks, natural disasters, or political action) could lead to termination. It then considers where timely policies could intervene to avert termination shock. We conclude that some relatively simple policies could protect a solar geoengineering system against most of the plausible drivers. If backup deployment hardware were maintained and if solar geoengineering were implemented by agreement among just a few powerful countries, then the system should be resilient against all but the most extreme catastrophes. If this analysis is correct, then termination shock should be much less likely, and therefore much less of a risk, than has previously been assumed. Much more sophisticated scenario analysis—going beyond simulations purely of worst‐case scenarios—will be needed to allow for more insightful policy conclusions.
Eastham, Sebastian D., Debra K. Weisenstein, David W. Keith, and Steven R. H. Barrett. “Quantifying the impact of sulfate geoengineering on mortality from air quality and UV-B exposure.” Atmospheric Environment (2018). Publisher's VersionAbstract
Sulfate geoengineering is a proposed method to partially counteract the global radiative forcing from accumulated greenhouse gases, potentially mitigating some impacts of climate change. While likely to be effective in slowing increases in average temperatures and extreme precipitation, there are known side-effects and potential unintended consequences which have not been quantified. One such consequence is the direct human health impact. Given the significant uncertainties, we take a sensitivity approach to explore the mechanisms and range of potential impacts. Using a chemistry-transport model, we quantify the steady-state response of three public health risks to 1 °C global mean surface cooling. We separate impacts into those which are “radiative forcing-driven”, associated with climate change “reversal” through modification of global radiative forcing, and those “direct impacts” associated uniquely with using sulfate geoengineering to achieve this. We find that the direct (non-radiative forcing driven) impact is a decrease in global mortality of ∼13,000 annually. Here the benefits of reduced ozone exposure exceed increases in mortality due to UV and particulate matter, as each unit of injected sulfur incurs 1/25th the particulate matter exposure of a unit of sulfur emitted from surface sources. This reduction is exceeded by radiative forcing-driven health impacts resulting from using sulfate geoengineering to offset 1 °C of surface temperature rise. Increased particulate matter formation at these lower temperatures results in ∼39,000 mortalities which would have been avoided at higher temperatures. As such we estimate that sulfate geoengineering in 2040 would cause ∼26,000 (95% interval: −30,000 to +79,000) early deaths annually relative to the same year without geoengineering, largely due to the loss of health benefits associated with CO2-induced warming. These results account only for impacts due to changes in air quality and UV-B flux. They do not account for non-mortality impacts or changes in atmospheric dynamics, and must be considered in the wider context of other climate change impacts such as heatwave frequency and sea level rise.
Mahajan, Aseem, Dustin Tingley, and Gernot Wagner. “Fast, cheap, and imperfect? U.S. public opinion about solar geoengineering.” Environmental Politics (2018). Publisher's VersionAbstract
Solar geoengineering, which seeks to cool the planet by reflecting a small fraction of sunlight back into space, has drawn the attention of scientists and policymakers as climate change remains unabated. Unlike mitigation, solar geoengineering could quickly and cheaply lower global temperatures. It is also imperfect. Its environmental impacts remain unpredictable, and its low cost and immediate effects may result in “moral hazard,” potentially crowding out costly mitigation efforts. There is little understanding about how the public will respond to such tradeoffs. To address this, a 1,000-subject nationally representative poll focused on solar geoengineering was conducted as part of the Cooperative Congressional Election Study (CCES) of the US electorate in October-November 2016. The importance that individuals place on solar geoengineering’s speed and cost predicts their support for it, but there is little to no relationship between their concerns about its shortcomings and support for its research and use. Acquiescence bias appears to be an important factor for attitudes around solar geoengineering and moral hazard.
Parker, Andy, Joshua Horton, and David Keith. “Stopping Solar Geoengineering Through Technical Means: A Preliminary Assessment of Counter-Geoengineering.” Earth's Future (2018). Publisher's VersionAbstract
Counter-geoengineering is the idea that a country might seek or threaten to counteract the cooling effect of solar geoengineering through technical means. Although this concept has been mentioned with increasing frequency in commentary on geoengineering, it has received little scholarly attention. We offer a preliminary analysis. We begin by distinguishing two kinds of counter-geoengineering: countervailing with a warming agent, and neutralising with a physical disruption. Based on this distinction, we review prior suggestions and describe novel methods by which either method might be accomplished, within the constraints imposed by deep technical uncertainties and substantial technical challenges. We then reflect on the strategic requirements and motivations for developing counter geoengineering and use a simple game-theoretic framework to demonstrate how counter-geoengineering might interact with the free-driver dynamic of solar geoengineering to shape climate geopolitics. We find that any state that could credibly threaten counter-geoengineering would effectively have a veto over the use of solar geoengineering, which could reduce the prospects of unilateral deployment. Alternatively, the development of geoengineering and countergeoengineering capabilities could lead to dangerous brinkmanship. We conclude that the development of counter-geoengineering would face considerable practical obstacles and would signal continuing political failure to manage climate risks on a cooperative basis.
Smith, Jordan P., John Dykema, and David Keith. “Production of Sulfates Onboard an Aircraft: Implications for the Cost and Feasibility of Stratospheric Solar Geoengineering.” Earth and Space Science (2018). Publisher's VersionAbstract
Injection of sulfate aerosols into the stratosphere, a form of solar geoengineering, has been proposed as a means to reduce some climatic changes by decreasing net anthropogenic radiative forcing. The cost and technical feasibility of forming aerosols with the appropriate size distribution are uncertain. We examine the possibility of producing the relevant sulfur species, SO2 or SO3, by in situ conversion fromelemental sulfur onboard an aircraft. We provide afirst-order engineering analysis of an open cycle chemicalplant for in situ sulfur to sulfate conversion using a Brayton cycle combustor and a catalytic converter. We find that such a plant could have sufficiently low mass that the overall requirement for mass transport to the lower stratosphere may be reduced by roughly a factor of 2. All else equal, this suggests that—for a given radiative forcing—the cost of delivering sulfate aerosols may be nearly halved. Beyond reducing cost, the use of elemental sulfur reduces operational health and safety risks and should therefore reduce environmental side effects associated with delivery. Reduction in cost is not necessarily beneficial as it reduces practical barriers to deployment, increasing the urgency of questions concerningthe efficacy, risks, and governance of solar geoengineering.
Sugiyama, Masahiro, Shinichiro Asayama, Atsushi Ishii, Takanobu Kosugi, John C. Moore, Jolene Lin, Penehuro F. Lefale, et al.The Asia-Pacific’s role in the emerging solar geoengineering debate.” Climatic Change (2017).Abstract
Increasing interest in climate engineering in recent years has led to calls by the international research community for international research collaboration as well as global public engagement. But making such collaboration a reality is challenging. Here, we report the summary of a 2016 workshop on the significance and challenges of international collaboration on climate engineering research with a focus on the Asia-Pacific region. Because of the region’s interest in benefits and risks of climate engineering, there is a potential synergy between impact research on anthropogenic global warming and that on solar radiation management. Local researchers in the region can help make progress toward better understanding of impacts of solar radiation management. These activities can be guided by an ad hoc Asia-Pacific working group on climate engineering, a voluntary expert network. The working group can foster regional conversations in a sustained manner while contributing to capacity building. An important theme in the regional conversation is to develop effective practices of dialogues in light of local backgrounds such as cultural traditions and past experiences of large-scale technology development. Our recommendation merely portrays one of several possible ways forward, and it is our hope to stimulate the debate in the region.

Pages