Harvard's Solar Geoengineering Research Program seeks to advance natural and social science research on solar geoengineering. The following academic and non-technical publications highlight some of the latest findings.

Academic Publications

Horton, Joshua B., Jesse L. Reynolds, Holly Jean Buck, Daniel Callies, Stefan Schäfer, David W. Keith, and Steve Rayner. “Solar Geoengineering and Democracy.” Global Environmental Politics (2018): 5-24. Publisher's VersionAbstract
Some scientists suggest that it might be possible to reflect a portion of incoming sunlight back into space to reduce climate change and its impacts. Others argue that such solar radiation management (SRM) geoengineering is inherently incompatible with democracy. In this article, we reject this incompatibility argument. First, we counterargue that technologies such as SRM lack innate political characteristics and predetermined social effects, and that democracy need not be deliberative to serve as a standard for governance. We then rebut each of the argument’s core claims, countering that (1) democratic institutions are sufficiently resilient to manage SRM, (2) opting out of governance decisions is not a fundamental democratic right, (3) SRM may not require an undue degree of technocracy, and (4) its implementation may not concentrate power and promote authoritarianism. Although we reject the incompatibility argument, we do not argue that SRM is necessarily, or even likely to be, democratic in practice.
Mahajan, Aseem, Dustin Tingley, and Gernot Wagner. “Fast, cheap, and imperfect? U.S. public opinion about solar geoengineering.” Environmental Politics (2018). Publisher's VersionAbstract
Solar geoengineering, which seeks to cool the planet by reflecting a small fraction of sunlight back into space, has drawn the attention of scientists and policymakers as climate change remains unabated. Unlike mitigation, solar geoengineering could quickly and cheaply lower global temperatures. It is also imperfect. Its environmental impacts remain unpredictable, and its low cost and immediate effects may result in “moral hazard,” potentially crowding out costly mitigation efforts. There is little understanding about how the public will respond to such tradeoffs. To address this, a 1,000-subject nationally representative poll focused on solar geoengineering was conducted as part of the Cooperative Congressional Election Study (CCES) of the US electorate in October-November 2016. The importance that individuals place on solar geoengineering’s speed and cost predicts their support for it, but there is little to no relationship between their concerns about its shortcomings and support for its research and use. Acquiescence bias appears to be an important factor for attitudes around solar geoengineering and moral hazard.
MacMartin, Douglas G., Katharine L. Ricke, and David W. Keith. “Solar geoengineering as part of an overall strategy for meeting the 1.5°C Paris target.” Philosophical Transactions of the Royal Society 376, no. 2119 (2018).Abstract
Solar geoengineering refers to deliberately reducing net radiative forcing by reflecting some sunlight back to space, in order to reduce anthropogenic climate changes; a possible such approach would be adding aerosols to the stratosphere. If future mitigation proves insufficient to limit the rise in global mean temperature to less than 1.5°C above preindustrial, it is plausible that some additional and limited deployment of solar geoengineering could reduce climate damages. That is, these approaches could eventually be considered as part of an overall strategy to manage the risks of climate change, combining emissions reduction, net-negative emissions technologies and solar geoengineering to meet climate goals. We first provide a physical science review of current research, research trends and some of the key gaps in knowledge that would need to be addressed to support informed decisions. Next, since few climate model simulations have considered these limited-deployment scenarios, we synthesize prior results to assess the projected response if solar geoengineering were used to limit global mean temperature to 1.5°C above preindustrial in an overshoot scenario that would otherwise peak near 3°C. While there are some important differences, the resulting climate is closer in many respects to a climate where the 1.5°C target is achieved through mitigation alone than either is to the 3◦C climate with no geoengineering. This holds for both regional temperature and precipitation changes; indeed, there are no regions where a majority of models project that this moderate level of geoengineering would produce a statistically significant shift in precipitation further away from preindustrial levels. This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels’.
Dai, Zhen, Debra Weisenstein, and David Keith. “Tailoring Meridional and Seasonal Radiative Forcing by Sulfate Aerosol Solar Geoengineering.” Geophysical Research Letters 45 (2018).Abstract
We study the possibility of designing solar radiation management schemes to achieve a desired meridional radiative forcing (RF) profile using a two-dimensional chemistry-transport-aerosol model. Varying SO2 or H2SO4 injection latitude, altitude, and season, we compute RF response functions for a broad range of possible injection schemes, finding that linear combinations of these injection cases can roughly achieve RF profiles that have been proposed to accomplish various climate objectives. Globally averaged RF normalized by the sulfur injection rate (the radiative efficacy) is largest for injections at high altitudes, near the equator, and using emission of H2SO4 vapor into an aircraft wake to produce accumulation-mode particles. There is a trade-off between radiative efficacy and control as temporal and spatial control is best achieved with injections at lower altitudes and higher latitudes. These results may inform studies using more realistic models that couple aerosol microphysics, chemistry, and stratospheric dynamics.
Keith, David W., Gernot Wagner, and Claire L. Zabel. “Solar geoengineering reduces atmospheric carbon burden.” Nature Climate Change 7 (2017): 617–619. Publisher's VersionAbstract
Solar geoengineering is no substitute for cutting emissions, but could nevertheless help reduce the atmospheric carbon burden. In the extreme, if solar geoengineering were used to hold radiative forcing constant under RCP8.5, the carbon burden may be reduced by ~100 GTC, equivalent to 12–26% of twenty-first-century emissions at a cost of under US$0.5 per tCO2.

Non-Technical Publications