Academic Publication

Keith, David W., Gernot Wagner, and Claire L. Zabel. “Solar geoengineering reduces atmospheric carbon burden.” Nature Climate Change 7 (2017): 617–619. Publisher's VersionAbstract
Solar geoengineering is no substitute for cutting emissions, but could nevertheless help reduce the atmospheric carbon burden. In the extreme, if solar geoengineering were used to hold radiative forcing constant under RCP8.5, the carbon burden may be reduced by ~100 GTC, equivalent to 12–26% of twenty-first-century emissions at a cost of under US$0.5 per tCO2.
Tingley, Dustin, and Gernot Wagner. “Solar geoengineering and the chemtrails conspiracy on social media.” Palgrave Communications 3, no. 12 (2017). Publisher's VersionAbstract
Discourse on social media of solar geoengineering has been rapidly increasing over the past decade, in line with increased attention by the scientific community and low but increasing awareness among the general public. The topic has also found increased attention online. But unlike scientific discourse, a majority of online discussion focuses on the so-called chemtrails conspiracy theory, the widely debunked idea that airplanes are spraying a toxic mix of chemicals through contrails, with supposed goals ranging from weather to mind control. This paper presents the results of a nationally representative 1000-subject poll part of the 36,000-subject 2016 Cooperative Congressional Election Study (CCES), and an analysis of the universe of social media mentions of geoengineering. The former shows ~ 10% of Americans declaring the chemtrails conspiracy as “completely” and a further ~ 20–30% as “somewhat” true, with no apparent difference by party affiliation or strength of partisanship. Conspiratorial views have accounted for ~ 60% of geoengineering discourse on social media over the past decade. Of that, Twitter has accounted for >90%, compared to ~ 75% of total geoengineering mentions. Further affinity analysis reveals a broad online community of conspiracy. Anonymity of social media appears to help its spread, so does the general ease of spreading unverified or outright false information. Online behavior has important real-world reverberations, with implications for climate science communication and policy.
Dai, Zhen, Debra Weisenstein, and David Keith. “Tailoring Meridional and Seasonal Radiative Forcing by Sulfate Aerosol Solar Geoengineering.” Geophysical Research Letters 45 (2018).Abstract
We study the possibility of designing solar radiation management schemes to achieve a desired meridional radiative forcing (RF) profile using a two-dimensional chemistry-transport-aerosol model. Varying SO2 or H2SO4 injection latitude, altitude, and season, we compute RF response functions for a broad range of possible injection schemes, finding that linear combinations of these injection cases can roughly achieve RF profiles that have been proposed to accomplish various climate objectives. Globally averaged RF normalized by the sulfur injection rate (the radiative efficacy) is largest for injections at high altitudes, near the equator, and using emission of H2SO4 vapor into an aircraft wake to produce accumulation-mode particles. There is a trade-off between radiative efficacy and control as temporal and spatial control is best achieved with injections at lower altitudes and higher latitudes. These results may inform studies using more realistic models that couple aerosol microphysics, chemistry, and stratospheric dynamics.

Pages